AQA Qualifications

# GCSE <br> Mathematics 

Unit 2 43602H
Mark scheme

43602H
November 2014

Version/Stage: v1.1

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts: alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this Mark Scheme are available from aqa.org.uk

## Glossary for Mark Schemes

GCSE examinations are marked in such a way as to award positive achievement wherever possible. Thus, for GCSE Mathematics papers, marks are awarded under various categories.

M Method marks are awarded for a correct method which could lead to a correct answer.

A

B Marks awarded independent of method.
Q Marks awarded for Quality of Written Communication
ft Follow through marks. Marks awarded for correct working following a mistake in an earlier step.

SC Special case. Marks awarded within the scheme for a common misinterpretation which has some mathematical worth.

Mdep A method mark dependent on a previous method mark being awarded.

B dep A mark that can only be awarded if a previous independent mark has been awarded.
oe
Or equivalent. Accept answers that are equivalent. eg, accept 0.5 as well as $\frac{1}{2}$
$[\boldsymbol{a}, \boldsymbol{b}] \quad$ Accept values between $a$ and $b$ inclusive.
$3.14 \ldots \quad$ Allow answers which begin $3.14 \mathrm{eg} 3.14,3.142,3.149$.

Use of brackets It is not necessary to see the bracketed work to award the marks.

Examiners should consistently apply the following principles

## Diagrams

Diagrams that have working on them should be treated like normal responses. If a diagram has been written on but the correct response is within the answer space, the work within the answer space should be marked. Working on diagrams that contradicts work within the answer space is not to be considered as choice but as working, and is not, therefore, penalised.

## Responses which appear to come from incorrect methods

Whenever there is doubt as to whether a candidate has used an incorrect method to obtain an answer, as a general principle, the benefit of doubt must be given to the candidate. In cases where there is no doubt that the answer has come from incorrect working then the candidate should be penalised.

## Questions which ask candidates to show working

Instructions on marking will be given but usually marks are not awarded to candidates who show no working.

## Questions which do not ask candidates to show working

As a general principle, a correct response is awarded full marks.

## Misread or miscopy

Candidates often copy values from a question incorrectly. If the examiner thinks that the candidate has made a genuine misread, then only the accuracy marks (A or B marks), up to a maximum of 2 marks are penalised. The method marks can still be awarded.

## Further work

Once the correct answer has been seen, further working may be ignored unless it goes on to contradict the correct answer.

## Choice

When a choice of answers and/or methods is given, mark each attempt. If both methods are valid then M marks can be awarded but any incorrect answer or method would result in marks being lost.

## Work not replaced

Erased or crossed out work that is still legible should be marked.

## Work replaced

Erased or crossed out work that has been replaced is not awarded marks.

## Premature approximation

Rounding off too early can lead to inaccuracy in the final answer. This should be penalised by 1 mark unless instructed otherwise.

| $\mathbf{Q}$ | Answer | Mark | Comments |
| :--- | :---: | :---: | :---: |


| $\mathbf{1 ( a )}$ | 93.42 | B1 | any clear indication |
| :---: | :--- | :---: | :--- |
| 1(b) | 34.6 | B1 | any clear indication |


| 2 | $\frac{30}{100} \times 4$ or $1.2(0)$ or 120 <br> or $\frac{70}{100}$ | M1 |  |
| :---: | :--- | :--- | :--- |
|  | 4-their $1.2(0)$ or 2.8 <br> or $\frac{70}{100} \times 4$ | oe |  |
|  | M1dep | Q1 2.80 | Strand (i) Must have correct units <br> do not accept 2.80 p or 280 p or 2.8 |


| 3 | $70 \times 40$ or 2800 | M1 | (Nisha) |
| :---: | :---: | :---: | :---: |
|  | $\begin{aligned} & \text { their } 2800-\frac{5}{100} \times \text { their } 2800 \\ & \text { or } 2800-140 \text { or } 2660 \end{aligned}$ | M1dep | oe (Nisha) |
|  | $70 \div 5$ or $\frac{1}{5} \times 70$ or 14 or $\frac{4}{5} \times 70$ or 56 | M1 | oe (Dipen) |
|  | their $14 \times 4 \times 40$ or $56 \times 40$ or $70 \times 40$ - their $14 \times 40$ or their $2800-$ their $14 \times 40$ or 2240 | M1dep | oe dependent on $3^{\text {rd }}$ method mark (Dipen) |
|  | 2660 and 2240 | A1 |  |
|  | 420 and No | Q1ft | Strand (iii) <br> correct comparison for their values, with at least one correct value |

## Additional Guidance

2800-140 implies minimum first and second Method marks
2800-560 implies minimum third and fourth Method marks

| 4(a) | $5,9,13,17,21$ seen |  |  | M1 |
| :---: | :--- | :--- | :--- | :--- |
|  | $5+9+13+17+21=65$ | Allow one error or omission |  |  |


| 4(b) | $4 n+1$ | B2 | oe <br> B1 $4 n( \pm k)$ |
| :--- | :--- | :--- | :--- |

## 4(b) Additional Guidance

| $4 \times n+1$ | is B 2 |
| :--- | :--- |
| $4 \times n(+k)$ | is B 1 |

## Alternative method 1

| $x+x+30=110$ | M1 | ( $x$ representing Ann) |
| :--- | :---: | :--- |
| $(x=) 40$ | A1 |  |
| $\frac{\text { their } 40+30}{110}$ | A1ft | oe fraction $\frac{7}{11}$ |

## Alternative method 2

| $x+x-30=110$ | M1 | ( $x$ representing Tom) |
| :--- | :---: | :--- |
| $(x=) 70$ | A1 |  |
| $\frac{\text { their } 70}{110}$ | A1ft | oe fraction $\frac{7}{11}$ |

## Alternative method 3

| $(110-30) \div 2$ or $80 \div 2$ | M1 |  |
| :--- | :---: | :--- |
| 40 | A1 |  |
| $\frac{\text { their } 40+30}{110}$ | A1ft | oe fraction $\frac{7}{11}$ |

## Alternative method 4

| $(110+30) \div 2$ or $140 \div 2$ | M1 |  |
| :--- | :---: | :--- |
| 70 | A1 |  |
| $\frac{\text { their } 70}{110}$ | A1ft | oe fraction $\frac{7}{11}$ |

## Alternative method 5

| $110 \div 2+15$ or $55+15$ | M1 |  |
| :--- | :---: | :--- |
| 70 | A1 |  |
| $\frac{\text { their } 70}{110}$ | A1ft | oe fraction $\frac{7}{11}$ |

Additional Guidance
$\frac{85}{110}$
is MO AO AOft

| 6 | $6 x+15-2 x+8$ | M1 | allow one error |
| :--- | :--- | :--- | :--- |
|  | $6 x+15-2 x+8$ | A1 | fully correct |
|  | $4 x+23$ | A1ft | do not ignore fw <br> SC2 $4 x+7$ |

## Additional Guidance

Do not allow fw eg. $4 x+23=27 x$ score AO for final accuracy mark
Allow fw in trying to solve equation after $4 x+23$ seen to score A1 for final accuracy mark
$6 x+15-2 x-8$
$4 x+7 \quad$ is M1 A0 A1ft
$4 x+7$ alone on answer line $\quad$ is SC2
Two independent expanded brackets (shown one underneath the other)
$6 x+15$
$2 x-8$
with $4 x+23$ on answer line $\quad$ is M1 A1 A1
Two independent expanded brackets shown remotely (same line)
$6 x+15 \quad 2 x-8$
with $4 x+23$ on answer line
is M 1 A 1 A 1
Two independent expanded brackets shown remotely without correct answer on answer lines scores zero marks
$6 x+15 \quad 2 x-8$
with answer line blank is MO AO AO

| 7(a) | $5 x \geq 29+11$ | oe |  |
| :--- | :--- | :--- | :--- |
|  | or $x-\frac{11}{5} \geq \frac{29}{5}$ |  |  |
| or $x \geq \frac{40}{5}$ | M1 |  |  |
|  | $x \geq 8$ | A1 | SC1 8 |
| SC1 $x \geq 3.6$ or $x \geq 3 \frac{3}{5}$ |  |  |  |


| 7(b) |  | B1 $x<4$ |
| :--- | :--- | :--- | :--- |

## Additional Guidance

Intention must be clear to indicate $x<4$ with minimum of a line drawn to the left of hollow circle positioned at 4.


Is B2

implies

## Alternative method 1

| $\frac{110}{200}$ or $\frac{140}{250}$ | M1 | oe |
| :--- | :--- | :--- |
| $\frac{55}{100}$ and $\frac{56}{100}$ | A1 | oe both fractions correctly written with <br> common denominator <br> eg. $\frac{275}{500}$ and $\frac{280}{500}$ |
| Y11 and their $\frac{55}{100}$ and their $\frac{56}{100}$ | Q1ft | oe <br> Strand (iii) <br> M1 and correct decision based on their <br> fractions written with common denominator, <br> with at least one correct |

## Alternative method 2

| $\frac{110}{200}$ or $\frac{140}{250}$ | M1 | oe |
| :--- | :--- | :--- |
| 0.55 and 0.56 or $55(\%)$ and $56(\%)$ | A1 |  |
| Y11 and their $55(\%)$ and their $56(\%)$ |  |  |
| or Y11 and their 0.55 and their 0.56 | Q1ft | oe <br> Strand (iii) <br> M1 and correct decision based on their <br> decimals or percentages, with at least one <br> correct |
| Alternative method 3 | M1 | oe |
| $110: 200$ or $140: 250$ | A1 | oe both ratios correctly written with common <br> right side or left side for comparison |
| $27.5: 50$ and $28: 50$ | Q1ft | Strand (iii) <br> oe <br> M1 and correct decision based on their ratios <br> correctly written with common right side or <br> left side for comparison, with at least one <br> correct |
| Y11 and |  |  |
| their $27.5: 50$ and their $28: 50$ |  |  |


| $\begin{gathered} 8 \\ \text { (cont) } \end{gathered}$ | Alternative method 4 |  |  |
| :---: | :---: | :---: | :---: |
|  | $\frac{200-110}{200} \text { or } \frac{250-140}{250}$ | M1 | oe |
|  | $\frac{45}{100} \text { and } \frac{44}{100}$ | A1 | oe both fractions correctly written with common denominator <br> eg. $\frac{225}{500}$ and $\frac{220}{500}$ |
|  | Y 11 and their $\frac{45}{100}$ and their $\frac{44}{100}$ | Q1ft | oe <br> Strand (iii) <br> M1 and correct decision based on their fractions written with common denominator, with at least one correct |
|  | Alternative method 5 |  |  |
|  | $\frac{200-110}{200} \text { or } \frac{250-140}{250}$ | M1 | oe |
|  | 0.45 and 0.44 or 45(\%) and 44(\%) | A1 |  |
|  | Y11 and their 45(\%) and their 44(\%) or Y11 and their 0.45 and their 0.44 | Q1ft | oe <br> Strand (iii) <br> M1 and correct decision based on their decimals or percentages, with at least one correct |
|  | Alternative method 6 |  |  |
|  | $\begin{aligned} & (200-110): 200 \text { or }(200-140) \\ & 250 \end{aligned}$ | M1 | oe |
|  | 22.5 : 50 and $22: 50$ | A1 | oe both ratios correctly written with common right side or left side for comparison |
|  | Y11 and <br> their $22.5: 50$ and their $22: 50$ | Q1ft | oe <br> Strand (iii) <br> M1 and correct decision based on their ratios correctly written with common right side or left side for comparison, with at least one correct |


| 9(a) | $(x+a)(x+b)$ | M1 | where $a b= \pm 24$ or $a+b=10$ |
| :--- | :--- | :--- | :--- |
|  | $(x+4)(x+6)$ | A1 | oe |


| 9(b) | $x=-4$ and $x=-6$ | B1ft | ft their factorisation from part (a) |
| :--- | :--- | :--- | :--- |


| 10 | Alternative method 1 |  |  |
| :---: | :---: | :---: | :---: |
|  | $4 \frac{1}{2} \times 3 \frac{3}{4} \quad$ or $\frac{9}{2}$ or $\frac{15}{4}$ | M1 |  |
|  | $\frac{9}{2} \times \frac{15}{4}$ or $\frac{135}{8}$ | M1dep |  |
|  | $16 \frac{7}{8}$ | A1 | oe mixed number |
|  | Alternative method 2 |  |  |
|  | $4.5 \times 3.75$ or 15 or 1.875 | M1 |  |
|  | Full method to evaluate $4.5 \times 3.75$ | M1dep | allow one error |
|  | 16.875 | A1 | condone rounding or truncation after correct answer seen |

11

| $3 y=12-4 x$ | oe |  |
| :--- | :--- | :--- |
| or $\frac{4 x}{3}+y=4$ | M 1 |  |
| or $\frac{12-4 x}{3}$ |  |  |
| $y=\frac{12-4 x}{3}$ | A 1 |  |
| or $y=\frac{4(3-x)}{3}$ |  |  |
| or $y=4-\frac{4 x}{3}$ |  |  |

12(a) | 5 | B1 |  |
| :--- | :--- | :--- |

| 12(b) | $(0,-4)$ | B1 |  |
| :--- | :--- | :--- | :--- |


| 13 | $10.8 \times 10^{(5-2)}$ or $10.8 \times 10^{3}$ <br> or $540000 \times 0.02$ or $5400 \times 2$ <br> or 10800 | M1 | oe |
| :---: | :--- | :---: | :--- |
|  | $1.08 \times 10^{4}$ | A1 | SC1 $1.1 \times 10^{4}$ |

## Alternative method 1

\(\left.$$
\begin{array}{|l|l|c|l|}\hline \begin{array}{l}8 f+4 c=40.2(0) \\
\text { and } \\
3 f+4 c=19.2(0)\end{array} & \begin{array}{l}6 f+3 c=30.15 \\
\text { and } \\
6 f+8 c=38.4(0)\end{array}
$$ \& \mathrm{M} 1 \& oe <br>

allow one error\end{array}\right]\)| $5 f=21(.00)$ | $5 c=8.25$ | M1dep |
| :--- | :--- | :--- |
| $(f=) 4.2(0)$ | $(c=) 1.65$ | A 1 |
| oe correct elimination of one unknown for |  |  |
| their equations |  |  |$|$

## Alternative method 2

| $3 f+4(10.05-2 f)=19.2(0)$ | M1 | oe |  |
| :--- | :--- | :--- | :--- |
| allow one error |  |  |  |
| or $2\left(\frac{19.2(0)-4 c}{3}\right)+c=10.05$ | $5 c=8.25$ | M1dep | oe correct elimination of one unknown for <br> their equations |
| $5 f=21(.00)$ | (c=) 1.65 | A 1 |  |
| $(f=) 4.2(0)$ | A 1 | oe |  |
| 21.75 |  |  |  |

## Alternative method 3

| $5 f+5 c=29.25$ | M 1 |  |
| :--- | :---: | :--- |
| $f+c=29.25 \div 5$ or $f+c=5.85$ | M1dep |  |
| $(f=) 4.2(0)$ or $(c=) 1.65$ | A 1 |  |
| 21.75 | A 1 |  |

## Alternative method 4

| $5 f+5 c=29.25$ | M1 |  |
| :--- | :---: | :--- |
| $f+c=29.25 \div 5$ or $f+c=5.85$ | M1dep |  |
| $2 f+2 c=10.7(0)$ | A1 |  |
| 21.75 | A1 |  |


| 15 | $x(x-2)$ or $x^{2}-2 x$ | M1 | oe <br> any correct common denominator seen |
| :---: | :--- | :---: | :--- |
|  | $4 x-3(x-2)$ or $4 x-3 x+6$ | M1dep | oe <br> correct numerator seen for their <br> denominator, may be written as separate <br> fractions |
|  | Q1 | oe <br> Strand (ii) <br> correct answer with no errors in working |  |


| 16 | $(\sqrt{10}=) \sqrt{5} \times \sqrt{2}$ or $\sqrt{5 \times 2}$ <br> or $(\sqrt{20}=) \sqrt{5} \times \sqrt{4}$ or $\sqrt{5 \times 4}$ or $2 \sqrt{5}$ or $3 \sqrt{200}$ or $3 \sqrt{100 \times 2}$ <br> or $3 \sqrt{10 \times 10 \times 2}$ or $3 \sqrt{25 \times 8}$ <br> or $3 \sqrt{5 \times 5 \times 8}$ or $3 \sqrt{25 \times 2 \times 2 \times 2}$ <br> or $3 \sqrt{5 \times 5 \times 2 \times 2 \times 2}$ <br> or $(3 \sqrt{20}=) 6 \sqrt{5}$ or $3 \times 2 \sqrt{5}$ <br> or $6 \sqrt{50}$ or $7 \sqrt{50}$ <br> or $(\sqrt{50}=) \sqrt{25} \times \sqrt{2}$ or $\sqrt{5 \times 5 \times 2}$ or $5 \sqrt{2}$ | M1 | oe |
| :---: | :---: | :---: | :---: |
|  | $30 \sqrt{2}$ or $3 \times 10 \sqrt{2}$ <br> or $35 \sqrt{2}$ or $7 \times 5 \sqrt{2}$ <br> or $13 \sqrt{50}$ or $\sqrt{10} \times 13 \sqrt{5}$ | M1dep | oe |
|  | 65 | A1 | allow $65 \sqrt{2}$ |
| 16 | Additional Guidance |  |  |
|  | First method mark is for any useful first step |  |  |


| 17 | $15 x^{2}-6 x y-20 x y+8 y^{2}$ | M1 | allow one error |
| :---: | :--- | :---: | :--- |
|  | $15 x^{2}-6 x y-20 x y+8 y^{2}$ | A1 | fully correct |
|  | $15 x^{2}-26 x y+8 y^{2}$ | A1ft | ft their four terms <br> do not ignore further work for final mark |


| 18 | $x^{2}+a x+a x+\left(a^{2}\right)$ <br> or $x^{2}+2 a x+\left(a^{2}\right)$ <br> or $2 a=8$ or $a^{2}+b=7$ | M1 |  |
| :---: | :--- | :---: | :--- |
|  | $(x+4)^{2}$ <br> or $a=4$ or $b=-9$ | A 1 |  |
|  | $(x+4)^{2}-9$ | allow $a=4$ and $b=-9$ |  |

## Alternative method 1

| $\left(\frac{1}{R}=\right) \frac{1}{0.6}+\frac{1}{1.8}$ | M1 | oe |
| :--- | :--- | :--- |
| $\left(\frac{1}{R}=\right) \frac{3}{1.8}\left(+\frac{1}{1.8}\right)$ | M1dep | oe |
| $\left(\frac{1}{R}=\right) \frac{4}{1.8}$ or $(R=) \frac{1.8}{4}$ | M1dep | oe |
| 0.45 | A 1 | oe fraction or decimal |

## Alternative method 2

| $\left(\frac{1}{R}=\right) \frac{1}{\frac{6}{10}}+\frac{1}{\frac{18}{10}}$ or $\left(\frac{1}{R}=\right) \frac{1}{\frac{3}{5}}+\frac{1}{\frac{9}{5}}$ | M1 | oe |
| :--- | :--- | :--- |
| $\frac{10}{6}$ or $\frac{30}{18}$ or $\frac{10}{18}$ or $\frac{5}{3}$ or $\frac{15}{9}$ or $\frac{5}{9}$ | M1dep | oe |
| $\left(\frac{1}{R}=\right) \frac{40}{18}$ or $\left(\frac{1}{R}=\right) \frac{20}{9}$ | M1dep | oe |
| $\frac{18}{40}$ or $\frac{9}{20}$ | A1 | oe fraction or decimal |

## Alternative method 3

| $\frac{1}{R}=\frac{R_{2}+R_{1}}{R_{1} R_{2}}$ | M 1 |  |
| :--- | :---: | :--- |
| $\frac{R_{1} R_{2}}{R_{2}+R_{1}}$ or $\left(\frac{1}{R}=\right) \frac{1.8+0.6}{0.6 \times 1.8}$ | M1dep | oe |
| $\frac{0.6 \times 1.8}{1.8+0.6}$ or $\frac{0.6 \times 1.8}{2.4}$ or $\frac{1.8}{4}$ | M1dep | oe |
| 0.45 | A 1 | oe fraction or decimal |


| 20 | $\frac{1}{8^{\frac{2}{3}}}$ or $\frac{1}{\sqrt[3]{8^{2}}}$ or $\frac{1}{(\sqrt[3]{8})^{2}}$ or $\sqrt[3]{8}=2$ |  |  |
| :--- | :--- | :--- | :--- |
| or $\frac{1}{2^{2}}$ or $2^{-2}$ or $4^{-1}$ or $2^{2}=4$ | M1 |  |  |
| $\frac{1}{4}$ or 0.25 | A 1 |  |  |


| 21 | $m=5$ | B1 |  |
| :---: | :---: | :---: | :---: |
|  | $\left(3^{2}\right)^{p}=3^{m}$ or $3^{2 p}=3^{m}$ <br> or $\left(3^{2}\right)^{p}=3^{\text {their } 5}$ or $3^{2 p}=3^{\text {their } 5}$ <br> or $3^{5}=243$ or $3^{\text {their } 5}=(\sqrt{9})^{\text {their } 5}$ <br> or $3^{\text {their } 5}$ correctly evaluated <br> $9^{p}=9^{\frac{m}{2}}$ or $9^{p}=3^{\text {their } 5}$ <br> or $9^{p}=243$ or $3^{2 p}=243$ | M1 | oe |
|  | $2 p=m$ or $2 p=$ their 5 or $9^{p}=9^{\frac{\text { their }}{2}}$ | M1 | oe |
|  | $p=2.5$ | A1ft | oe <br> ft for values of $m$ and $p$ where $p=\frac{m}{2}$ |

